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This chapter discusses the statistics of electrons in a semiconductor in thermal equilibrium.
Understanding the equilibrium situation is essential to appreciating the behavior of a semicon-
ductor when perturbed. This is in fact a pervasive theme of this book. It is many times rather
insightful to view semiconductor device operation as the process required to reestablish equilib-
rium following an external disturbance.

This chapter starts by discussing the distinct role that electrons in the conduction and va-
lence bands have in semiconductors. The concept of "hole” is introduced, Basically, a hole is a
missing electron in the valence band. Following this, "intrinsic” and ”extrinsic” semiconductors
are defined and the role of a special kind of foreign atoms, ”dopants”, play in controlling the
equilibrium electron and hole concentrations in semiconductors is discussed. We continue with
a rather general and fairly rigorous formulation to enable the computation of the equilibrium
carrier concentrations in semiconductors in a wide range of situations. This formulation is based
on an energy view of the situation and exploits the concept of Fermi level.

The results obtained in this chapter are very important to semiconductor device design and
will be extensively used throughout this book.

2.1 Conduction and valence bands; bandgap; holes

We saw in Ch. 1 that a semiconductor is a crystalline solid with a band structure that at 0 K
is characterized by several bands completely filled with electrons. The last full band is separated
from the next empty band by a relatively small bandgap, the ”fundamental” bandgap. The
meaning of “relatively small” has to do with the actual temperature of operation of semiconductor
devices. The proper scale of this statement is the thermal energy k7. For devices that operate
near room temperature, the most widely used semiconductors have bandgaps of the order of 0.7
to 2 eV. 5i for example has a bandgap at room temperature of 1.12 eV while GaAs has 1.42 eV.
Wider bandgap semiconductors are currently under research for high-temperature applications,
such as integrated circuits for jet engine control. A good example is SiC with a bandgap of 3
eV. Narrower bandgap semiconductors are also of interest for applications such as cooled infrared
sensors. InSb with a bandgap of 0.17 eV is under investigation for this purpose.

Most of the behavior that we are likely to encounter in semiconductor devices involves an
energy picture that is centered around the fundamental bandgap, or simply, ”the bandgap”. In
semiconductor device operation we can safely ignore the complexities of the fully occupied deeper
lying bands. In fact, the two key bands around the fundamental bandgap are given special names.
The band immediately below is called the valence band while the band immediately above is called
the conduction band. In an energy picture, E, is used to denote the top edge of the valence band
and E, the location of the bottom edge of the conduction band. The symbol E, is used to refer
to the width of the energy gap that separates these two edges. The magnitude of the bandgap
depends on temperature. Advanced Topic AT2.1 discusses this.

If we zoom into the energy band structure of a semiconductor around the fundamental
bandgap, the picture at the left of Fig. 2.1 emerges. It shows the top of the valence band,
the bandgap and the bottom of the conduction band. In the semiconductor literature it has
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Figure 2.1: Left: band structure of a semiconductor around the fundamental energy gap. Dark shading represents
a full band at 0 K. Light shading represents an empty band at 0 K. Right: simplified representation showing only
band edges.

become common to extract the essence of this picture by just drawing the edges of the bands as
represented on the right of Fig. 2.1. This is the first and simplest of many energy band diagrams
that will be drawn in this book and that are widely used in the semiconductor device literature.
The energy picture is a particularly intuitive and powerful way to represent many processes that
take place in a semiconductor. It does not capture everything that is important about a semi-
conductor. For example, it does not contain enough information to understand light emission
and absorption which requires an awareness of momentum. However, this simple energy picture
is very useful in understanding transport in devices such as microelectronic transistors. For this
reason, it is extensively used in microelectronics engineering.

It is important not to lose sight of the physical meaning of the conduction and valence bands.
To refresh our memory we go back to the structural arrangement of atoms in a semiconductor.
We discussed in the previous chapter that, in a semiconductor, atoms bond together mostly by
sharing valence electrons. On average, an atom ends up with 8 valence electrons around it, a
particularly low energy arrangement. This situation can be represented in a simple flat sketch
as shown in Fig. 2.2a). In this figure, each box represents an atom and each stick represents
a bonding valence electron. Each atom shares its four valence electrons with its four neighbors
and therefore each pair of atoms shares two electrons between them. Although Fig. 2.2 shows
a flattened array, it represents in reality a three-dimensional network of atoms. This simple flat
picture does not change in any substantial way in the case of a compound semiconductor with
two or more different kinds of atoms.

Fig. 2.2a) represents a 0 K situation, where all valence electrons are engaged in bonding
between neighboring atoms. Fig. 2.2b) shows a picture at a finite temperature where one bonding
electron has acquired enough energy from the finite thermal energy of the lattice to freely wander
around the crystal. It becomes a “conduction” electron. The number of electrons that break
off their ties to atoms is a function of temperature and other parameters. We will learn how
to calculate this number later on in this chapter. Before that, it is important to note that in
the place that was occupied by the electron that escaped, a hole is left. Since the electron is
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Figure 2.2: Flat model of the semiconductor lattice: a) at 0 K with all valence electrons participating in bonding,
b) at finite temperature where one electron has become free leaving a hole behind, and c) after the hole moves to
a neighboring location.

negatively charged with a charge of —g, this hole has a net positive charge of +¢. The actual
origin of this positive charge is the partially uncompensated charge associated with the protons
in the two atoms involved. In spite of that, the hole can also move around. This happens when a
neighboring bonding electron jumps in to satisfy the missing bond. This leaves two other atoms
partially unbonded somewhere clse. Effectively, this makes the hole move from one place to
another (Fig. 2.2c). Both the conduction electron and the hole are called carriers because as
they move, they "carry” their elemental electric charge along with them.

Energy band diagrams represent the situations depicted in Fig. 2.2 in a very physical way,
as shown in Fig. 2.3. In order to understand how this is done, let us first think about the 0
K condition where no covalent bonds are broken. At 0 K the valence band is completely full
of electrons while the conduction band is empty. This allows us to conclude that the bonding
valence electrons are represented in the energy band diagram by levels or states inside the valence
band. With a full valence band and a completely empty valence band, no conduction is possible
in an ideal semiconductor at 0K.

At a finite temperature, the free electron depicted in Figs. 2.2b) and 2.2c) has acquired enough
energy to be promoted from the valence band to the conduction band where the abundance of
empty states allows it to move around easily. Free electrons therefore occupy states in the
conduction band. The hole left behind, however, sits inside the valence band in the energy band
picture. The hole is an empty state in the valence band. Whenever there is an empty state,
conduction becomes possible. Since there are many electrons in the valence band (the bonding
electrons), it will not be too difficult for one of these electrons to jump to the empty position
where the hole resides thereby allowing the hole to move around. The hole is therefore also free.
Similar to air bubbles in water where it is easier to focus on the simple movement of the bubble
rather than on the complex flow of water around it, it is much more convenient to describe the
complicated movement of bonding electrons in the valence band in terms of the hole dynamics.
In energy band diagrams, only holes are typically represented in the valence band. Bonding
electrons can be ignored in most circumstances.

=
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Figure 2.3: Sketch of free electrons and holes in energy band diagram. Note the different signs for clectron and
hole energy scales.

Before proceeding any further, there are two additional important observations that must be
made about energy band diagrams. The first one is that at the edges of the bands, the kinetic
energy of the carriers is zero. We can easily understand that with the help of Fig. 2.4a) which
depicts a photon striking a semiconductor. If the energy of this particular photon is exactly the
bandgap energy of the semiconductor, then the photogenerated electron and hole cannot have
any extra kinetic energy. The entire photon energy is consumed to break the bond. ! In the
energy band picture, both carriers are represented at their respective band edges.

The second observation regarding energy band diagrams is that electron energies increase
upwards while hole energies increase downwards, as Fig. 2.3 makes explicit. If a conduction
electron has higher kinetic energy, it shows up at a high energy inside the conduction band. For
holes, this picture is reversed - a high kinetic energy hole is represented deep down inside the
valence band. This can be better understood with the help of Fig. 2.4b). Consider two photons
of identical energy hv > E, impinging on different bonding electrons and producing electron-hole
pairs. In one case, the electron that is promoted to the conduction band carries all the extra
energy in excess of that required to create an electron-hole pair as kinetic energy. This electron
is represented inside the conduction band at an energy hr — E,; over the conduction band edge.
Energy conservation leaves no extra kinetic energy for the hole which therefore sits at F,. In a
second case, the contrary situation occurs: the electron is ejected with no extra kinetic energy so
it sits at E, and the hole carries all the extra energy as kinetic energy and it is represented at
an energy hv — E, below the band edge. Clearly hole energies increase downwards in the energy
band diagram. A high kinetic energy fast-moving hole represents a situation in which bonding
electrons are jumping from bonding site to bonding site very quickly.

The flat picture of a semiconductor shown in Fig. 2.2 allows us to visualize a conduction
electron and a hole in a simple and intuitive way. It is important, however, to note two significant

"We often refer to an electron-hole pair as resulting from the break up of a covalent bond. This term should
not be interpreted to mean that the electron and hole coordinate their behavior in any way after they have been
generated. Each carrier goes its own way.
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Figure 2.4: Energy band diagram depicting photons impinging on a semiconductor. In a) the photon has an
energy identical to the bandgap energy. As a result, the photogenerated electron and hole sit at the respective
band edges. In b), the two photons have more energy than the bandgap. In one case (right), the extra available
energy beyond the bandgap is given as kinetic energy to the electron. In the other case (left) it is given to the hole.

inaccuracies that are implied in this figure. In Fig. 2.2 the electron and hole are sketched as having
a “size” of the order of an interatomic distance in the semiconductor, about 0.2-0.3 nm. This
is wrong by at least an order of magnitude. In fact, in Ch. 1 we estimated the effective size of
an electron at room temperature to be about 7.6 nm. Since a hole is not expected to be very
different from an electron (we will get to better appreciate the differences between them as we
advance in this book), this is also a good working number for the size of a hole. We also showed
that a sphere of a diameter of 7.6 nm contains over 10,000 atoms. This illustrates how spread out
electrons and holes really are in a semiconductor. A conduction electron is not the little lump
represented in Fig. 2.2 but is spread out over thousands of atomic sites. Also, the notion that a
hole jumps from a precise bonding location to a neighboring one is not very physical. A ”fuzzier”
probabilistic view is actually more appropriate.

The second inaccuracy implied in Fig. 2.2 comes from the view that the movement of a hole
really represents the “retrograde” motion of a particular bonding electron. Not only does the
large size of a hole make this view rather ambiguous, but it ignores the quantum mechanical
nature of the bonding electrons in a semiconductor, which is very different from electrons in
vacuum. The retrograde view of the motion of a hole can actually lead to rather unphysical
conclusions. However, for the kinds of applications that we are interested on in this book, the
collective dynamic behavior of the quantum-mechanical bonded electrons in a semiconductor in
the presence of a broken bond is well represented by an ordinary classical particle of charge -+q.
The analogy of a bubble of air in a liquid representing the complex collective behavior of liquid
niolecules around it is really insightful in this regard.

As a final remark in this section, from here on in this text we will refer to conduction electrons
as simply "electrons.” We will describe the behavior of bonding electrons in the valence band in
terms of holes. We will totally ignore in the rest of our studies the core electrons that are tightly
bound to each constituent atom of the crystal, as they play no role in semiconductor devices.



J. A del Alamo 53

2.2 Intrinsic semiconductor

In a semiconductor in thermal equilibrium at a finite temperature, some of the bonds that tie
the constituent atoms are broken. In consequence, there is a certain number of free electrons
in the conduction band and a number of holes left in the valence band. It is inevitable to ask
the question: in this situation, how many electrons and holes are there per unit volume? How
do these concentrations depend on temperature? Rigorously answering these questions is the
purpose of this chapter.

Let us first say a few words about what we mean by an “ideal” semiconductor. For the time
being we will define this as a perfectly crystalline piece of a semiconductor that is 100% pure
(i.e., no foreign atoms) and that is unaffected by any surface effects. An ideal semiconductor
defined this way is also called an intrinsic semiconductor. We will soon see that we can relax the
second aspect of this stringent definition to just "sufficiently” pure, i.e., some impurities might
be present without changing the picture substantially, provided that their concentration is not
too high. Also later on, we will understand the implications of the third restriction regarding
surface effects. In subsequent Chapters we will learn how to deal with surfaces and to evaluate
how far their influence extends into the body of a semiconductor.

So the question is again, in an intrinsic semiconductor in thermal equilibrium, how many
electrons and holes are there? Answering this question requires a fairly elaborate model that is

developed later on in this chapter. However, a number of important dependencies can be readily
identified.

It is obvious that in an intrinsic semiconductor in thermal equilibrium, the number of elec-
trons and holes has to be identical to each other at all temperatures. This is because every
bond that gets broken produces precisely one electron and one hole. Also, every bond that is
formed eliminates from circulation one electron and one hole. If we define n, as the equilibrium
electron concentration (number of electrons in the conduction band per unit volume) and p, as
the equilibrium hole concentration (number of holes in the valence band per unit volume), it is
clear that n, must equal p, everywhere. This concentration is also called the intrinsic carrier
concentration, n;. Hence, in an intrinsic semiconductor in thermal equilibrium,

M, (2.1)

Typically, n,, po, and n; are given in units of ecm =3,

What are they key dependencies of n;? Intuitively we already know that n; must have a
direct dependence on temperature. The higher the temperature, the more vigorously the atoms
vibrate in the semiconductor lattice and the easier it will be for a bond to break. We also expect
n; to exhibit some kind of inverse dependence on the bandgap of the semiconductor, E,. This is

because the higher the bandgap, the harder it is to break a bond and liberate an electron and a
hole.

To be more specific about the dependence of n; on T' and Ey, we need a detailed model. This
is presented below in Sect. 2.4.4. Yet, an analogy with chemical reactions, can reveal the leading
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dependencies. Consider, for example, the well known reaction of decomposition of water into its
two constituent ions:

HO+= H" +OH" (2.2)

When a water molecule decomposes, a hydrogen ion and a hydroxyl ion are produced. These
two ions can combine again to form a water molecule. This chemical reaction is in some way
similar to the break up of a crystalline bond in a semiconductor. When a crystalline bond breaks,
an electron and a hole are produced. A bond is formed when an electron and a hole come together.
Bond break up and formation in a erystalline semiconductor can be therefore thought of as the
following chemical reaction:

bond = e~ 4+ h* (2.3)

This analogy is powerful because we can exploit what we have learned in elementary chemistry
to understand a great deal about the statistics of electrons and holes in semiconductors. We know,
for example, that in a chemical reaction the law of mass action establishes a relationship between
the concentrations of reactants and reaction products, through a so-called "rate constant.” We
also know that the rate constant exhibits a peculiar dependence on temperature and on the energy
required for the reaction to take place. For the water decomposition reaction, the law of mass
action is written as:

_ [HT][OH"]

o= [H,0] ~ exp(—i) (2.4)

ET

where E is the energy consumed or released in the water decomposition reaction.

Eq. 2.4 exhibits a peculiar dependence on 7' and E that is rather common in nature. Equations
such as this apply to processes that are ”thermally activated”, that is, processes in which the rate

of reaction is limited by the need to overcome a certain energy barrier. This threshold energy is
called the "activation energy.”

In analogy with Eq. 2.4, we could write a similar law of mass action for the crystalline bond
dissociation reaction of 2.3, as follows:

NoPo
K = — el —
[bonds) =B

E K
k_i'z") (2.5)

where n, and p, have been defined above, and [bonds] refers to the concentration of unbroken
bonds. For the bond dissociation reaction, the activation energy is the bandgap energy since this
is the energy that is required to break a bond.

Under typical conditions, the number of broken bonds in a semiconductor is a tiny fraction
of the total number of bonds (this becomes clear when we put some numbers later on). Or, in
other words, the concentration of bonds is never upset in a significant way (or the semiconductor
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Figure 2.5: Arrhenius plot of n; in Si. Measurements of Misiakos and Tsamakis [Journal of Applied Physics 74,
3203 (1993))].

will melt). In consequence, the concentration of unbroken bonds ([bonds] in Eq. 2.5) is to first
order constant, and then we can conclude that:

—

g
NP ~ eXp(——= - (2.6

The fact that the product of the equilibrium hole and electron concentrations has this peculiar
dependence on E, and T is a very significant result with important consequences. Although
obtained here in a qualitative way, the rigorous treatment carried out later on in this chapter will
lead to the same set of dependencies.

The result of Eq. 2.6, when combined with Eq. 2.1, allows us to obtain the key dependencies
of n;:

E
i ”eXP(_%—;ﬂ) (2.7)

As expected, n; increases with temperature and decreases with E,. What is interesting is
the specific negative exponential form of these dependencies. This is in fact readily observed in
experiments. Fig. 2.5 shows experimental measurements of n; for Si as a function of temperature.
In this figure, the ordinate graphs n; in a semilog scale, while the abcissa graphs 1/kT in a linear
scale. T increases towards the left. When graphed this way, a straight line with a negative slope
is obtained. This is consistent with Eq. 2.7 and is the characteristic signature of a thermally
activated process. This kind of graph is called an Arrhenius plot in honor of Svante Arrhenius
who showed around 1889 the pervasiveness of thermally activated processes in nature. From the
slope of the straight line, the bandgap of Si can be obtained. For the data of Fig. 2.5, a bandgap
energy of 1.224 eV is obtained. This is close but not exactly equal to the best known value of
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1.124 eV’ for Si at room temperature. The reason for this small discrepancy is twofold. First, the
missing prefactor in Eq. 2.7 is sligtly temperature dependent. This prefactor will be derived later
in Section 2.4. Additionally, FE, itself also depends on temperature, as discussed in Advanced
Topic AT2.1. Issues around the temperature dependence of n; are explored in detail in Problem
2.4.

The chemical reaction analogy does not give us a complete expression for n;. The prefactor
is missing and we therefore do not know how to compute its absolute value. To do this, we have
to go through the detailed development described in Section 2.4. For reference, n; for Si at room
temperature is about 10 em=3.

There is a second and hugely important result that emerges from Eq. 2.6. This equation
states that the equilibrium np product in a semiconductor at a certain temperature is a constant
that is specific to the semiconductor. Establishing a parallel again with the water dissociation
reaction, this is equivalent to saying that the product of the concentration of HT and OH ™ ions
in pure water at a certain temperature is a constant. The implications of this are obvious. If we
increase the concentration of H™ in water (for example, by dissolving a small amount of acid),
the concentration of OH~ will drop accordingly. This is because the equilibrium values of H+
and OH ™ are established from the balance of a dissociation reaction pointing to the right in 2.2
and a recombination reaction pointing to the left. Selectively adding H* to the bath enhances
the rate of the left-pointing reaction bringing down the OH ~ concentration.

The same arguments apply to electrons and holes in semiconductors. In the case of a perfectly
pure semiconductor, the equilibrium electron and hole concentrations are identical and equal to
n;. This value arises from a balance between the rate of break up of bonds and the rate of
formation of bonds. If we could find a way to selectively introduce, say, electrons so that the
electron concentration increases above n;, the rate of formation of bonds will increase and the
hole concentration will drop below n;. The product will remain a constant. Since for an intrinsic
semiconductor n, = p, = n;, in general, then,

RoPo = N2 (2.8)

This is a very important equation that will be used extensively in this and subsequent Chap-
ters. When we do our more detail analysis in Section 2.4 below, we will find that this equation
is of broad applicability but it is not completely general. In the language of chemical reactions
again, it works in the "dilute” regime, that is. if the concentration of carriers that is added is not
too high.

How carriers can be added in a selective way to a semiconductor is described in the next
Section.

2.3 Extrinsic semiconductor

So far we have considered only the introduction of electrons and holes in a semiconductor via
the spontaneous break up of atomic bonds. There is another way in which electrons and holes
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a) neutral donor b) ionized donor

Figure 2.6: Sketch of a donor atom in a semiconductor lattice: a) in a neutral state, b) in an ionized state.

can be introduced and that is by "doping” it with small amounts of selected impurities. Key
to the process of doping is the fact that it is possible to selectively introduce electrons into the
conduction band without producing an equal amount of holes in the valence band and vice versa.
If the resulting concentration of any one of the carriers overwhelms the thermal contribution that
arises from the break up of covalent bonds, the semiconductor is said to be "extrinsic.” When
electrons are introduced in a preferential way, the semiconductor is said to be n-type. If holes are
in the majority, the semiconductor is called p-type.

Doping is one of the pillars over which the microelectronics industry is built. Precise placement
of dopant atoms in a semiconductor allows the creation of n-type and p-type regions with nearly
arbitrary shape and doping distribution. It is largely through careful engineering of doping
profiles that devices are designed to deliver the required specifications for different applications.
Doping can be accomplished in a variety of ways, such as solid-state diffusion or ion implantation.
In diffusion, dopant atoms diffuse from a dopant-rich source into the semiconductor. In ion
implantation, ionized dopant species are accelerated to high energies and "slammed” against the
semiconductor penetrating to a certain depth. A thermal activation step allows the incorporation
of the dopants into substitutional locations in the lattice.

The following subsections describe how certain impurities are able to selectively introduce
electrons or holes into a semiconductor. We will also learn to compute the equilibrium carrier
concentrations in an extrinsic semiconductor.

2.3.1 Donors and acceptors

Consider what happens if, in a perfect Si lattice, a Si atom is substituted by a foreign atom, such
as As or P, that comes from Column V of the periodic table (see Fig. 1.4). Since these atoms
are located close to 5i in the periodic table, they are not very different from Si. They can take
the place of a Si atom without disrupting the lattice too much. The foreign atom is said in this
case to be in a substitutional position. The uniqueness of column V atoms is that they have
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Figure 2.7: Sketch of an acceptor atom in a semiconductor lattice: a) in a neutral state, b) in an ionized state.

five electrons in the outer layer. This means that after consuming four electrons to bond to the
four nearest neighbors, there is a fifth electron that remains loosely attached - its binding energy
is typically in the 10 — 50 meV range. At room temperature this fifth electron can easily pick
up enough energy from the thermal energy of the lattice to escape the attraction of the donor
atom and roam freely around the crystal. This electron is indistinguishible from a thermally
created electron. The substitutional column V atom has thus ”donated” one of its electrons to
the conduction band. The "donor” is left positively charged since the number of protons in the

nucleus is one unit higher than the number of electrons around it. This situation is depicted in
Fig. 2.6.

A parallel situation takes place if Si is doped with column III elements such as B. These atoms
have three electrons in the outer layer. A substitutional B atom bonds with three Si neighbors but
1s unable to bond with the fourth one. There is in effect a hole in the covalent bonding structure
at the location of the impurity atom. This hole can easily migrate away from the impurity site
if a nearby bonding electron jumps in and satisfies the missing covalent bond in a process that
typically takes less than 0.1 eV. At this point the hole has moved to a neighboring location and
is indistinguishable from a regular thermally created hole. In the process of releasing a hole to
the valence band, the impurity has ”accepted” a bonding electron and has become negatively
charged. This is depicted in Fig. 2.7.

For GaAs and other III-V semiconductors the situation is slightly more complicated. Elements
from Column VI, such as Se, are donors when placed substitutionally at an As site. Elements
from Column II, such as Zn or Be, behave as acceptors at a Ga site. Elements from Column IV,
such as Si or Ge, have an amphoteric behavior. This means that when placed at an As site, they
behave as acceptors, but at a Ga site, they are donors. With amphoteric impurities, different
doping conditions can result in either an n-type or a p-type semiconductor. In spite of this,
Si is a widely used donor for III-V semiconductors. This is because it is not difficult to create
conditions in which there is a high concentration of vacant Ga sites ("Ga vacancies” ) and a small
concentration of vacant As sites (”As vacancies”). In this way, the Si atoms preferentially find
themselves in substitutional positions at Ga sites where they behave as donors.
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Electron states associated with donor and acceptor atoms can be represented in the energy
band diagram as shown in Fig. 2.8 Donor states are graphed inside the forbidden gap slightly
below the conduction band edge at Ep. The reason is that it only takes a small amount of
energy to release the loosely bound electron to the conduction band. This energy is called the
donor ionization energy and is represented with the symbol E4. Similarly, acceptor states are
represented slightly above the valence band, at E4, as a little energy will result in the release
of a hole to the valence band. This energy is called the acceptor ionization energy, E,. Broken
lines are used for the donor and acceptor states to indicate the fact that the impurity atoms are
typically far apart from each other. Table 2.1 in Advanced Topic AT2.4 collects typical ionization
energies for common Si and GaAs dopants. As is the case for Si atoms, the remaining bonding
electrons of the impurity atoms are represented as full states inside the valence band.

2.3.2 Charge neutrality

A piece of a semiconductor in thermal equilibrium, as a whole, is charge neutral. This is regardless
of whether it is elemental or compound, doped or undoped, at a finite temperature or at 0 K.
Every atom of the semiconductor is charge neutral to begin with, that is, all atoms have matching
numbers of electrons and protons. If no particles are allowed to escape from the semiconductor,
overall charge neutrality must prevail.

Spatially, the picture can be more complex. First of all, the disruption to the perfect ordering
of the crystal that is introduced by the surfaces can alter charge neutrality in their vicinity. This
can happen even if the semiconductor is ”pure”, that is, without any dopant impurities. We will
study the effect of surfaces later on in this book. Restricting ourselves to the bulk, far away
from the surfaces, local charge neutrality might not exist either if the dopant distribution is not
uniform in space. We will study this in greater detail in Ch. 4

With these two caveats in mind, in the bulk of a uniformly doped semiconductor in thermal
equilibrium, charge neutrality must prevail. Mathematically, for a general case in which the
semiconductor is doped with donors and acceptors simultaneously, the balance of the negatively
charged species and the positively charged species must be zero:

—no+Ppo+ Ny —N;=0 (2.9)

This is an important consideration when calculating equilibrium carrier concentr atwna in
doped semiconductors, as done in the next subsection.

2.3.3 Equilibrium carrier concentration in a doped semiconductor

In order to compute the equilibrium carrier concentrations in the bulk of a uniformly doped
semiconductor it is essential to first know the fraction of the dopant atoms that are ionized.
Fortunately, the ionization energy of typical dopants is small enough that at room temperature
a great majority of them are ionized. Denoting Np as the donor concentration, NE as the
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Figure 2.8: Representation of donor and acceptor states in the band diagram of a semiconductor.
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ionized donor concentration, N4 as the acceptor concentration, and N7 as the ionized acceptor
concentration, under many practical circumstances, we can write:

Nj ~ Np (2.10)

Nj ~ Ny (2.11)

At low temperatures, this cannot be the case since there is less thermal energy available
and certain impurities will be in a neutral state. When designing devices to operate at low
temperatures, it is crucial to correctly account for ”carrier freeze-out,” as this phenomenon is
known. This is described in Advanced Topic AT2.5.

It might seem counter intuitive to state that dopant atoms with an ionization energy on the
order of 40-60 meV can be all jonized at room temperature when the thermal energy is only
25 meV. This apparent contradiction is resolved by realizing that in most cases there are many
more states close to the band edges ready to accommodate carriers than dopant states at a
slightly lower energy. As a result. the slight energetic disadvantage of the band states is more
than compensated by their large numbers. In other words, for typical doping concentrations,
even though it is energetically favored, it is hard for electrons in the conduction band to find an
ionized donor to fall into. The same applies to acceptors and holes in the valence band. One
can view this as a golfer trying to get a golf ball in the hole. From potential energy arguments,
it is certainly true that the hole is a more favorable position for the ball to be in. It does not
follow, however, that regardless how the golfer hits the ball, it will neatly fall in the hole! For
a typical doping level of 10'7 ¢cm ™ the ionization ratio of P in Si at room temperature is 97%,
while this figure is 94% for B in Si. Advanced Topics AT2.4 and AT2.5 show how to perform
these calculations.

Carrier production from dopant atoms proceeds in parallel with the thermal electron-hole
pair formation from broken bonds. In a completely general case, both mechanisms must be
accounted for in order to compute the equilibrium carrier concentrations. For most common
semiconductors around room temperature, however, the doping concentrations overwhelm the
intrinsic carrier concentration. In this instance, the equilibrium carrier concentrations are easy
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to compute. For an n-type extrinsic semiconductor, the equilibrium electron concentration is
determined by the donor concentration:

Ng =~ JVD {2‘1‘2)

and the hole concentration can be found from Eq. 2.8:

2 2
T n
e = — { el ‘?' 2< 13
3 no, Np ( )

Since m, is much higher than n;, it follows that p, is much smaller than n;. In an n-type
semiconductor, then, n, > p,. In this case, electrons are said to be majority carriers while holes
are called minority carriers. Eq. 2.12 could have also been obtained from Eq. 2.9 by setting
N4 =0 and n, > p,.

Exercise 2.1: Estimate the equilibrium electron and hole concentrations in Si uniformly doped
with Np = 1016 em=3 at room temperature. State your assumptions.

Assuming that all donors are ionized, Eq. 2.12 gives:
ny =~ Np = 1016 em ™3
Plugging in Eq. 2.13 we find:

2 10 —-3\2
n 10" em
Po = —— =~ ( ) =10% em ™3

“ Np  10% ¢ 3

where we have used an approximate value for n; (the error in the estimation of p, is less than 10%
as a result of this approximation).

This exercise shows just how different the equilibrium electron and hole concentrations are in a
typical semiconductor under fairly standard conditions.

It is important to note here that while Eq. 2.12 assumes full dopant ionization, Eq. 2.13 is
more restrictive since it additionally requires the validity of Eq. 2.8. As discussed below, there

are some limitations to this. Nevertheless, for many situations, Eq. 2.13 is adequate and will be
used extensively in this book.

In a parallel way, for a p-type semiconductor in equilibrium, we have:

Po~ Ny (2.14)
and
2
n.
g O 2.15
mo = - (2.15)

In a p-type semiconductor, holes are the majority carriers and electrons are the minority carriers.
Note again that Eq. 2.15 applies to the extent that Eq. 2.8 is valid.
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Figure 2.9: Arrhenius plot of n, for an n-type semiconductor.

At high temperatures, an extrinsic semiconductor eventually becomes intrinsic as the thermal
break up of covalent bonds overwhelms the doping concentration. In this instance, Eqs. 2.12-
2.15 fail and Eq. 2.1 applies. In more general terms, if a semiconductor has a concentration of
dopants much smaller than n; the equilibrium electron and hole concentration is basically equal
to n;. We will still denote such a semiconductor as an intrinsic semiconductor even though it
is not perfectly pure. However, it is important to recognize that the value of n; for Si at room
temperature is so low (~ 10'® e¢m—3) that it is very hard to obtain a Si wafer that is intrinsic
at room temperature. The residual dopant concentration that unavoidably exists almost always
overwhelms n;. This is also the case for most common semiconductors. This situation changes
at higher temperatures since n; increases rapidly with temperature. It is in fact not difficult to
have intrinsic Si at say 600 °C, as a numerical exercise in Advanced Topic AT2.1 shows.

The main results of this section are graphically summarized in the sketch of an Arrhenius
plot of equilibrium electron concentration in an n-type semiconductor that is shown in Fig. 2.9.
A similar picture applies for p, in a p-type semiconductor. Fig. 2.9 shows that there is a broad
intermediate regime in which n, =~ Np. In this regime, the semiconductor is extrinsic and all
donors are fully ionized. This is the most common regime of device operation. At low enough
temperatures (towards the right in the diagram), the semiconductor is still extrinsic but not
all dopants are ionized. In this freeze-out regime, the electron concentration drops very quickly
with temperature (the activation energy of n, is shown in Advanced Topic AT2.5 to be E;/2).
At high enough temperatures (towards the far left in the diagram), intrinsic carrier production
overwhelms the doping level and the semiconductor becomes intrinsic.

Throughout this section we have considered semiconductors that are solely doped with donors
or acceptors. It is very common in devices to have regions that contain both kinds of dopants.
This happens, for example, in a PN junction fabricated by introducing n-type dopants into a
p-type wafer. In this case, the n-type region is still n-type but it is partially compensated by
the acceptor concentration. It is not difficult to derive general expressions for the equilibrium
carrier concentrations for a compensated semiconductor, as this situation is known. If there is to
be compensation, sound engineering practice, i.e. good process control, dictates that one type of
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dopant should clearly overwhelm the other, that is either Np > N4 or N4 > Np. It is easy to
show that in this case, all equations derived above apply if we substitute Ny = Np — N4 for Np
in Egs. 2.12 and 2.13, and N, = Ny — Np for Ny in Egs. 2.14 and 2.15 (see Problem 2.9). Ny
and N, are often called net donor and acceptor concentrations, respectively.

2.4 Carrier Statistics in Equilibrium

The results obtained in this chapter so far, though useful and relevant, are based on a qualitative
analogy between electron-hole production in an ideal semiconductor and a chemical reaction.
This view has left a few important voids, such as a complete expression for n;. It is actually
not very difficult to develop a rigorous set of models for the electron and hole concentrations in
thermal equilibrium in intrinsic and doped semiconductors. The most physically meaningful way
to do this is to adopt an energy view of semiconductors by exploiting energy band diagrams and
using the concept of Fermi level introduced in the previous chapter.

In the following sections, we will develop a formulation for carrier statistics in semiconductors
in thermal equilibrium in several steps. First, we will present a description of the density of states
of the conduction and valence bands close to their respective band edges. Then, we will derive
relationships between the equilibrium electron and hole concentrations and the relative location
of the Fermi level within the band structure of the semiconductor. From this, we will be able
to derive expressions for the n,p, product and n;. We will finish with a discussion about the
location of the Fermi level in intrinsic and extrinsic semiconductors.

2.4.1 Conduction and valence band density of states

As introduced in the previous Chapter, the density of states (DOS) is a parameter that quanti-
tatively describes the distribution of states available for electrons in a crystal. The DOS of the
valence and conduction bands in semiconductors has in general a rather complicated shape. Fig.
2.10 shows, for example, calculations of the DOS for Si and GaAs as a function of energy.

As will become clear soon, a lot of the carrier action in a semiconductor takes place at energies
close to the band edges. This implies that, in many device studies, there is no need for a detailed
description of the entire conduction and valence bands. Accuracy at energies close to the edges
of the bandgap will suffice.

A rather fundamental result of solid-state physics, and also an experimental observation, is
that in the vicinity of the band edges, the density of states increases following a square-root de-
pendence on energy. As a consequence, the conduction band density of states of a semiconductor,
ge(E), and the valence band DOS, g,(E), close to the band edges can be expressed as:

9:(E) = A/E-E, E>E, (2.16)

9(E) = AWE,—E E<E, (2.17)
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Figure 2.10: Density of states of the valence and conduction bands in Si (left) and GaAs (right) as a function
of energy. Close to the band edges, the DOS have a square-root dependence with energy [data courtesy of M.
Fischetti, IBM].

9c(E) and g, (E) have units of eV =1 - em™3. They are sketched in Fig. 2.11.

A. and A, are two proportionality constants. For reasons that are best understood in a
solid-state course, it is common practice to write these constants in the following way:

2m* 3/2

A, = 4W( :‘fe) (2.18)
* 3/2

A, = 4?(27;2‘”1) (2.19)

m};, and mJ, defined this way have units of mass (in €V - s2/em? in the "microelectronics” unit
system). Because of this, they are called respectively, the density of states electron effective mass
and the density of states hole effective mass. Three comments should be made about these two
new entities.

e First, the values of mj, and m},, which are semiconductor dependent, are typically given
in terms of the electron rest mass m,. For example, mj, = 1.09m, and my, = 1.15m,, for
Si at room temperature (they depend weakly on temperature).

e Second, the term “effective mass” is used with widely different meanings in the semicon-
ductor literature. For example, you are likely to come across a conductivity effective mass,
longitudinal or transverse effective masses, light-hole or heavy-hole effective masses, and
others. Although closely related. these are all different physical entities and it is important
not to mix them. In order to compute the DOS of a semiconductor, the DOS effective mass
must be used.
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Figure 2.11: Sketch of conduction and valence band density of states close to the band edges.

e Finally, the DOS effective mass is definition sensitive. Some authors use slightly different
expressions for Egs. 2.18 and 2.19 (a difference of a factor of two is not uncommon).
When using the DOS effective mass out of a particular source, it is important to check the
expression that is being used by the author to compute the DOS and apply appropriate
corrections if needed. Egs. 2.18 and 2.19 are the most popular expressions.

Fig. 2.11 sketches the DOS for a semiconductor such as Si in which mj, < m,. In this case,
at a given distance away from the band edge, the conduction band has fewer states than the
valence band. That is the meaning of a "heavier” DOS effective mass.

2.4.2 Equilibrium electron concentration

We now turn our attention to the distribution of electrons in the conduction band in thermal
equilibrium. In this section we not only seek to understand the shape of the electron distribution
in the conduction band but also we aim at developing expressions that will give us the total
electron concentration in the conduction band as a function of the relative position of the Fermi
level with respect to the band edge.

Before we get launched in a detailed mathematical formulation of the problem, it is useful
to develop some intuition as to the general dependencies that are to be expected. Assume for a
moment that the Fermi level is below the conduction band edge. It is clear that the closer the
Fermi level gets to the band edge, the higher the occupation probability of the conduction band
states becomes. Therefore, the total electron concentration increases. Furthermore, if the Fermi
level is not too close to the conduction band edge, this relationship has to be exponential since it
is the exponential tail of the Fermi-Dirac distribution function that overlaps with the conduction
band.

In a situation in which the Fermi level is inside the conduction band, the electron concentration
also increases the more the Fermi level penetrates into the band. However, this relationship is
much weaker than in the earlier case as a much bigger portion of the Fermi-Dirac distribution
function overlaps with the conduction band and not just its exponential tail. The detailed model
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that is developed in this section will show these dependencies.

The total electron concentration in the conduction band is computed by integrating the elec-
tron energy distribution across the entire conduction band. This is mathematically expressed
as:

o0
o :f ne(E) dE (2.20)
E.

where 710(E) represents the concentration of electrons per unit energy (in units of em=3 . eV 1)
in thermal equilibrium (the subindex 70" is frequently used to denote thermal equilibrium). Note
that the integral extends from the bottom of the conduction band all the way up to infinity.
This is of course strictly incorrect as the conduction band does not extend that far. The error
for not being more precise with the upper integration limit is negligible since significant electron
concentration only exists at the bottom of the band.

The calculation of n,(E) is simple. At a given energy, the electron concentration is obtained
by multiplying the conduction band density of states at that energy times the probability that a
state located there is occupied by an electron:

no(E) = g.(E) f(E) (2.21)

If we use in Eq. 2.21 the Fermi-Dirac distribution function f(E) (Eq. 1.7), g.(E) from Egs.
2.16 and 2.18, and we substitute everything into Eq. 2.20 we obtain:

2m* \32 > JE—E
n(,zf-lﬁ( ::de) /E —-—C:E.dE (2.22)

E-FEg
1+ exp =FF

We can rewrite this integral in a more concise form by changing variables in the following
way:

E-E,

_ 2,27
1 T (2.23)
and
Er —FE,.
Ne = T (2.24)

where 7 represents the normalized energy with respect to the conduction band edge in units of
kT.

After this change of variables, Eq. 2.22 becomes:

& 812 e
n, = 4w (M) / —\/ﬁ—d,:q (2.25)
0

h? 1+ em e
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We can further define:

Z?Tfn;}ekT) 3/2

N.=2 ( s (2.26)

N¢ is called the effective density of states of the conduction band. Its units are em 2.
The physical meaning of this parameter is explored in Problem 2.2.

Exercise 2.2: Compute N, for Si at room temperature.

As in previous exercises, it is essential to be extremely careful with the units of the various fun-
damental constants. In computing N, the first step is to calculate the density of states effec-
tive mass for electrons mj,. From Appendix B at the end of the book, my./m, = 1.09. Then
my, = 1.09 x 5.60 x 10716 eV - 52 /em? = 6.20 x 10716 ¢V - s2/em?. We can now plug this in Eq.
2.26 to get:

2x314%x6.20x 10718 eV - s2/em? x 25.9 x 1072 eV

N, =2
e (4.14 % 1015 ¢V - 5)2

3/2
] = 2.85x 10! em™3

which is fairly close to the currently accepted value of 2.86 x 10'® ¢m =2 that is listed in Appendix
B.

With the definition of N, Eq. 2.25 can be rewritten as:

no = NeFi /(1c) (2.27)

where F, 5 is called the Fermi-Dirac integral of order 1/2:

9 oo ]
Bl ﬁfn -l—%dn (2.28)

where @ is an independent variable.

The function 7, has some interesting properties that are summarized in Advanced Topic
AT2.2 at the end of this chapter. It is also tabulated in several books for different values of z. A
plot of Fy/; is shown in Fig. 2.12. 2

There are several interesting features to the result captured in Eq. 2.27. This equation only
depends on 7, the normalized Fermi energy with respect to the conduction band edge. Since
Fi2(z) is a monotonically increasing function of 2 (see Fig. 2.12), the higher the Fermi level
is relative to the conduction band edge, the more electrons there are in the conduction band.
This is to be expected since the occupation probability of any given state in the conduction band
increases the higher the Fermi level lies with respect to it. The increase in n, with increasing
Er — E. slows down, however, when the Fermi level penetrates into the conduction band (beyond

%In some textbooks, the Fermi-Dirac integral of order 1/2 is defined as Fy /5(z) = g.ﬂﬂ{x), To make matters

more confusing, the symbols are not used in a consistent way across the literature. It is important to always pay
close attention to the definition of this integral,
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Figure 2.12: Fermi-Dirac integral of order 1/2. Also sketched are two simple analytical approximations.

x = 0 in Fig. 2.12). When this happens, the semiconductor is referred to as degenerate, as
opposed to non-degenerate as it is called when Ep is below F,.

With some restrictions in the value of =, it is possible to obtain accurate analytical approxi-
mations to Fy/o(x). Some of the most common ones are collected in Advanced Topic AT2.2 at
the end of this chapter. The most useful of them is for z < —1 for which:

Fija(z) = e® forz < —1 (2.29)

This approximation is graphed in Fig. 2.12.

Eq. 2.29 is useful because it permits us to write a simple analytical expression for n, if the
semiconductor is sufficiently non-degenerate. That is, if . < —1, n, can be written as:

Er - E.

- (2.30)

Mo =~ Ngexp
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Figure 2.13: Sketch of electron distribution in conduction band in non-degenerate case (left) and degenerate case
(right).

This equation is valid when E. — Ep >> kT, or in other words, when the Fermi level is far below

the conduction band edge (about 3kT is usually enough). When this is the case, n, < N. which
is a handy rule to remember.

An alternate analytical approximation can be obtained for a strongly degenerate semiconduc-
tor. This is also shown in Fig. 2.12. It is only valid if the Fermi level has penetrated substantially

inside the conduction band. This approximation is discussed in more detail in Advanced Topic
AT2.3.
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Exercise 2.3: Estimate the location of the Fermi level with respect to the conduction band edge in
a sample of Si at room temperature with: a) n, = 1017 em ™3, b) n, = 1029 em=3.

For case a), n, = 10’ em™3 <« N.. We can then use Maxwell-Boltzmann statistics. Solving for
Ep — E. in Eq. 2.30, we get:

Ep—E, = kTln ™ = 0,0261n — 10" 0.15 eV
- FE.=k — =), N ==Ll e
F N 1986 x 1019 he

Indeed Ep is below E. by several kT's, as expected.

For case b), n, > N, and the semiconductor is degenerate. We must use Fermi-Dirac statistics for
electrons. Solving for F ;5(n.), we get:

No 1020

N. = 286x 100 °°

ﬂ/z(ﬂ.:) =
To first order, we can use Fig. 2.12 to estimate 7. ~ 2.5. Hence:

Er — E. = kTn. = 0.026 x 2.5 = 0.065 eV

Clearly Ep has penetrated inside the conduction band, as expected in a degenerate n-type semi-
conductor.

We can more accurately estimate the location of Ep using Egs. 2.56 and 2.57 in Advance Topic
AT2.2. If we do this, we find 1. = 2.44, and Ep — E. = 63 meV/.

Had we estimated the location of Ef using non-degenerate statistics, as in case ), we would have
obtained Er — E. = 33 meV, an error of nearly 50%.

Fig. 2.14 summarizes graphically the electron concentration in equilibrium in the conduction
band as a function of the relative position of the Fermi level with respect to the band structure
in a semilog scale. As the Fermi level moves up inside the bandgap, n, increases exponentially.
When Ep penetrates in the conduction band and the semiconductor becomes degenerate, the
dependence flattens out.

Qualitatively, the key difference between the non-degenerate and degenerate regimes lies in
the energy distribution of electrons inside the conduction band. This is sketched in Fig. 2.13 (see
also Problem 2.11). If the Fermi level is sufficiently below the conduction band edge, only the
exponentially decaying high-energy tail of the Fermi distribution penetrates into the conduction
band. In this case few states are occupied and the energy distribution of conduction band electrons
also decays exponentially with energy. In fact, one can directly obtain Eq. 2.30 by using Maxwell-
Boltzmann statistics in Eq. 2.21.

In a strongly degenerate semiconductor, the Fermi level is deep inside the conduction band
and many electrons occupy the bottom of the band. As Fig. 2.13 sketches, the energy distribution
in this case is rather different from a non-degenerate situation. It has nearly a square-root shape
at the bottom of the band with an exponentially decaying shape at higher energies.
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Figure 2.14: Sketch of electron and hole concentrations in equilibrium as a function of the relative position of
the Fermi level with respect to the band structure.

2.4.3 Equilibrium hole concentration

Similar arguments as those presented in the previous section can be applied to compute the
hole concentration in the valence band in equilibrium. This time we must integrate the hole
distribution in energy across the entire valence band. For an equilibrium situation:

E,
o= Po(E)dE (2.31)
o0

Do 1s in this case given by the product of the density of states in the valence band times the
probability that a given state is empty:

PQ(E) = U-U(E) 11 i f(E)] (2'32)

If we proceed as above and define:

E‘TT_.' e EF
and
2 * kT 3/2
Ny =2 (—””;:;L) (2.34)

we easily obtain
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Figure 2.15: Sketch of hole distribution in valence band in non-degenerate (left) and degenerate case (right).

Po = N'U}-I/Q(T?v) (2.35)

N, is called the effective density of states of the valence band and 7, gives the relative
position of the Fermi level with respect to the valence band edge in units of k7. The hole con-
centration in equilibrium follows a similar relationship to what was obtained above for electrons.
In this case, however, the lower the Fermi level with respect to the valence band edge, the higher
the hole concentration. N, in Si at room temperature is 3.10 x 1019 em=3.

When the Fermi level is well above the valence band edge (n, < —1, or Ep — E, > kT, or
Po < Ny), the exponential approximation to the Fermi-Dirac integral applies. This allows us to
write:

E, - Ep
Po = Ny exp s

- (2.36)

This is a case in which the hole distribution is non-degenerate. An analytical approximation can
also be obtained for a strongly degenerate p-type semiconductor. This is shown in Advanced
Topic AT2.3. The hole distribution in the valence band is sketched in Fig. 2.15 for these two
cases.

Fig. 2.14 illustrates the dependence of p, on the Fermi level position with respect to the band
structure. As Er moves up inside the bandgap, p, drops exponentially. If the Er is close or
inside the valence band, the dependence of p, on Ef is softer.

Fig. 2.16 offers a summary of the proper statistics that are to be used depending on the
position of Ep with respect to the bands. If the Fermi level sits anywhere inside the forbidden gap,
both electron and hole distributions are non-degenerate and Egs. 2.30 and 2.36 are reasonably
accurate. If the Fermi level penetrates inside anyone of the bands, then the semiconductor is
degenerate. To be more specific, if the Fermi level is located inside the conduction band, then the
electrons are degenerate but the holes are not. Fermi-Dirac statistics are necessary to describe the
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Figure 2.16: Summary of statistics for electrons and holes depending on the position of the Fermi level with
respect to the band structure.

electrons but Maxwel-Boltzmann can be used for the holes. In this case, the exact expression 2.27
must be used. If the electrons are sufficiently degenerate, the strongly degenerate approximation
2.58 in Advanced Topic AT2.3 applies. If, conversely, the Fermi level has penetrated inside the
valence band, the holes are degenerate but the electrons are not. A similar treatment applies

when the Fermi level is in the vicinity or inside the valence band with the role of electrons and
holes interchanged.

N, and N, represent practical benchmarks for the equilibrium carrier concentrations of elec-
trons and holes in assessing whether the semiconductor is degenerate or not. Appendix B collects
the values for Si and GaAs at room temperature. 2 It is important to note that N, and N,

increase with temperature in the form ~ T%/2. The origin for this dependence is explored in
Problem 2.2.

2.4.4 np product in equilibrium

Now that we have derived relationships between n, and p, and the relative location of the Fermi
level with respect to the semiconductor band structure, we are in a position to derive an expression
for the electron-hole product in equilibrium. Multiplying Egs. 2.27 and 2.35, we get:

NoPo = NeNyFy (1) Fi jalmo) (2.37)

This equation is sketched in Fig. 2.17 as a function of the Fermi level position with respect to
the band structure. Interestingly, for a broad range of Fermi level positions inside the bandgap,
NoPo 18 constant. This makes sense. As Fig. 2.14 illustrates, as Fr moves through the bandgap,
ne increases at the same rate at which p, decreases. The product of these two parameters is
then constant independent of the location of the Fermi level. It is easy to find an expression
for this constant value by noting that in this intermediate region, both electrons and holes are

In spite of their importance, there is still some degree of controversy about the numerical values of N, and
N, in Si and GaAs. Different books quote different numbers. For these and other physical parameters, the values
collected in this book are the most accurate in the judgment of the author.
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Figure 2.17: Sketch of n,p, as a function of the position of the Fermi level with respect to the band structure.

non-degenerate and Maxwell-Boltzmann statistics apply for both carriers (see Fig. 2.16). Using
2.30 and 2.36 we get:

E

NoPo = NN, exp(—ﬁ) (2.38)
This equation is of an identical form to that of Eq. 2.6 derived using the chemical reaction
arguments.

Ey, N, and N, are physical constants characteristic of each semiconductor that depend only
on temperature. Eq. 2.38 then indeed confirms our intuitive understanding that for a given
semiconductor at a given temperature, the equilibrium np product is a constant. Our rigorous
treatment has shown, however, that this is only the case when neither the electron nor the hole
distributions are degenerate. In other words, n,p, is a constant in the "dilute” regime where the
electron and hole concentrations are not too high. We will come back to this at the end of this
section.

In an intrinsic semiconductor, Eq. 2.38 is very likely to apply under a broad temperature
range since the carrier concentrations tend to be relatively low. Hence, the intrinsic carrier
concentration is fairly accurately given by:

n; = V N.N, exp[—%) (2.39)

This equation is consistent with our intuitive understanding of the meaning of n;, that is,
the concentration of electrons and holes that a perfectly pure piece of semiconductor has in
equilibrium at a certain temperature. In addition to the exponential dependence of n; on E,,
already discussed in the previous section, we also see in Eq. 2.39 that n; is proportional to
N. and N,. This makes sense since the higher the effective density of states, the more states
there are closer to the band edges and the higher the resulting carrier concentrations at a certain
temperature.

Using Eq. 2.39 is only valid when both electrons and holes can be described by Maxwell-
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Boltzmann statistics. This is a very good assumption for most intrinsic semiconductors. Only
for semiconductors with very small bandgaps at relatively high temperatures might we need to
be concerned with the accuracy of this expression. Problem 2.3 explores this issue.

@ Exercise 2.4: Compute n; for Si at room temperature.

Appendix B lists all the needed parameters for Si at room temperature. Since Eg, k, and T all
appear inside an exponential, it is important to have at least three significant digits in each of
these parameters in order to have acceptable aceuracy in the caleulation of n;. Using Eq. 2.39:

1.124 eV

;= 5 19 -3 1 19 =3 = v
n V/2.86 x 101° ¢—2 x 3 0= 10" emn=3 exp( %250 x 1035V

) =112 x 10 ¢m ™3

This value is fairly close to the conventionally accepted value of 1.07 x 100 em 2 listed in Appendix
B. For "back-of-the-envelope” calculations, a value of 101% ¢m~=3 is adequate.

Coming back to Eq. 2.38, its validity does not extend to the degenerate regime (whether n-
or p-type). It is reasonable that this be the case. As discussed above, when there are relatively
few electrons and holes in a semiconductor, the energy required to form an extra electron-hole
pair is E,. If, say, the equilibrium electron concentration is so high that the Fermi level has
penetrated inside the conduction band, the energy required to form an electron-hole pair is larger
than E,. This is because the bottom of the conduction band is full and empty states where
electrons can be placed are only available at higher energies inside the band. As a result, the np
product in equilibrium is reduced for high electron concentrations. The same happens for high
hole concentrations.

An important consequence of this, is that Eqs. 2.13 and 2.15 do not apply in the degenerate
regime as in this case n,p, < n2. In this instance, the computation of the minority carrier
concentrations are a bit more elaborate since the proper Fermi-Dirac statistics must be used for

the majority carriers. Exercise 2.5 below illustrate how this can be done.

Exercise 2.5: Estimate the equilibrium hole concentration for the two cases of Exercise 2.3,
In case a), no = 10'7 em™3, which is a non-degenerate situation. Then:

n?  1.1x10%

T 2 1.1 x 103 em ™3
fis

Po =

In case b), n, = 102 ¢m =3, This is a degenerate situation and we can not use nopo = n2. In
Exercise 2.3 we computed Er — E. = 63 meV for this case. This suggests that:

Ep~FE,=Epr—E.+E.— E,=Ep —E.+E;=0.063+1.124=1.187 ¢V

Since the holes are non degenerate, we can compute p, in the following way:

E, - FEf -1.
Po = Ny exp — B =3.1 x 10" 187

= F i e
kT PP Goamn — Lo

Had we used simple non-degenerate statistics, as in case a), the result would have been 1.1 ¢m—3
nearly a factor of three off.

In this text, however, we do not place a lot of emphasis on the computation of minority
carrier concentrations that accounts for the need for Fermi-Dirac statistics for the majority carriers
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because, in reality, the situation for semiconductors with high carrier concentrations is all together
more complex. In a heavily-doped semiconductor, a number of special "heavy-doping effects”
actually occur. They make the computation of carrier concentrations even more complicated.
This is discussed in detail in Advanced Topic AT2.6. Hence, in the main body of this book, Eqs.
2.13 and 2.15 will be used regardless of the doping level. Appropriate mention will be made in
casees where the errors might be significant and the specialized treatment of Advanced Topic
AT2.6 is required.

2.4.5 Location of Fermi level

In a semiconductor in thermal equilibrium, the location of the Fermi level with respect to the
band edges completely characterizes the carrier concentrations. Hence, indicating the location
of the Fermi level in an energy band diagram is a simple way to represent electron and hole
concentrations. Let us distinguish between intrinsic and extrinsic situations.

Intrinsic semiconductor

It is easy to find the location of the Fermi energy in an intrinsic semiconductor. Assuming that
Maxwell-Boltzmann statistics apply for both electrons and holes, n, and p, obey the simple
relationship given by Egs. 2.30 and 2.36. Equating them and solving for the Fermi level we find:

B+ E N,

E; = Y 4+ kTIn

(2.40)

“NE

where the Fermi level in this intrinsic situation has been relabeled E;, or intrinsic Fermi level.

The first term in Eq. 2.40 is precisely the middle of the bandgap. The second term adds a
correction to it. The magnitude of the correction depends on the degree to which N. and N,
differ from each other. For a semiconductor in which N, was precisely identical to N, then £}
would sit exactly at the middle of the forbidden gap. This makes sense as this is the way to
ensure that there are identical numbers of electrons and holes in equilibrium. If N, is bigger than
N, as is the case for Si, then equality of electron and hole concentrations forces E; to be above
the middle of the gap to compensate for the fact that there are more states at the top of the
valence band than at the bottom of the conduction band (see exercise below). The logarithm in
the second term of Eq. 2.40 makes this correction in general very small and graphically, E; is
nearly always close to the middle of the gap, as sketched in Fig. 2.18.

Exercise 2.6: Compute E; in Si at 300 K.
Using Eq. 2.40:

(N, . 3.1 x 1019 ¢m—3
kT In N, = 25.9 meV In CTTEY e 1 meV

E; is just 1 meV above the middle of the gap in Si at room temperature.
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Figure 2.18: Sketch of the position of the Fermi level in an intrinsic semiconductor.

Extrinsic semiconductor

For an n-type non-degenerate semiconductor with all dopants ionized, Maxwell-Boltzmann statis-
tics apply and we can either use Egs. 2.12 and 2.30 or Egs. 2.13, 2.36 and 2.39. In both cases
we get:

Ep-E,=kT 1n%’2 (2.41)

c

If needed, it is straightforward to refer Ep to the valence band edge. The logarithmic relationship
between Er — E, and Np in Eq. 2.41 is a result of the fact that in a moderately doped n-type
semiconductor, the electrons are non-degenerate and as a consequence they are well described by
Maxwell-Boltzmann statistics.

Similarly for a non-degenerate p-type semiconductor:

N,
A'I\'rA

Ep— E,=kTIn (2.42)

which can easily be referred to the edge of the conduction band if required. These equations can
also be used for partially compensated cases in which one type of doping overwhelms the other
by substituting Ny for Np, and N, for N4 (see Problem 2.9).

Fig. 2.19 sketches the position of the Fermi level as a function of N p (plotted on a logarithmic
horizontal scale). As Np increases, Ep approaches the conduction band edge in a logarithmic
manner following Eq. 2.41. For low doping levels, the Fermi level eventually converges to F; as
the semiconductor becomes intrinsic and Eq. 2.40 has to be used. For high doping levels, the
semiconductor becomes degenerate and Eq. 2.41 also fails. To compute Ef in this case, one has
to use the exact expression that accounts for Fermi-Dirac statistics, as was done in Exercise 2.3.
In spite of these limitations, for n-type Si at around room temperature Eq. 2.41 (and also Eq.
2.42 for p-type Si) is fairly accurate over seven orders of magnitude of doping concentration (from
~ 10" to ~ 108 em=3),
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Figure 2.19: Sketch of the position of the Fermi level in an n-type semiconductor as a function of the doping
level. Note abscissa is in a logarithmic scale.

Exercise 2.7: Compute the equilibrium carrier concentrations and the position of the Fermi level
with respect to the conduction band edge for a uniformly doped Si region with Np = 1 x 1016 em—3
and Na =1 x 107 em™2 at room temperature.

This is a case of partial compensation. Since N4 > Np we can define a net acceptor concentration
N,= N4 — Np =9 x10' ¢m3. Using N, instead of N4 in Eq. 2.14 we find that

Po =9 x 10%¢ em 3
Since p, <= N,,, Eq. 2.15 can be used to compute the equilibrium electron concentration:
(1.07 x 10%° e =2)?2

" 3 ... —3
S e = LARI0 R

Thy B

The position of the Fermi level with respect to the top of the valence band is obtained from Eq.
2.42:

) 3.1 % 1019 em—3 -
JE;F == E-” = (.0259 eV In m =0.15 eV

The position of Ep with respect to E. is simply obtained by subtracting F,:
Ep —E.=Ep - E, — Eg=0.151-1.124 = —0.97 eV
Since the value of n, has already been calculated, we could have also used Eq. 2.30 directly:

1.3 x 103 e 3
EF - E,;- = 0.0259 ¢V In m =—0.97 eV

The high doping regime in which the semiconductor is degenerate or nearly degenerate is
of very high practical importance. Degenerately doped n- and p-type regions are pervasive in
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modern Si and GaAs microelectronic devices. It is not possible, for example, to correctly predict
the current gain of a bipolar transistor without adequately dealing with heavy-doping effects. In
spite of the need to use Fermi-Dirac statistics for the majority carriers, modeling heavily-doped
regions is relatively simple at room temperature for many semiconductors. Advanced T opic AT2.6
discusses the idiosyncrasies of the high-doping regime and derives expressions for the equilibrium
carrier concentrations and the position of the Fermi level in the band structure. As a simple rule,
for Si at room temperature, if the carrier concentration exceeds about 109 em ™3, heavy doping
effects are important.

2.5 Summary

e In a semiconductor, the equilibrium carrier concentrations are related to the location of the
Fermi energy with respect to the band structure through:

. Er— E.

ng = Nc}‘_lﬂ(’%»_)
E,— Er

Po = Nvﬂ/z(#—)

e For the case in which the Fermi level does not get too close to either band edge (non-
degenerate regime), the equilibrium carrier concentrations are related to the Fermi level
location through simple exponential relations:

EF = E(
kT

ne =~ N, exp

E,-E
Po = N, exp TE

e For a given semiconductor, in the non-degenerate regime, the n,p, product depends only
on temperature:

2

E
NoPo =~ NN, exp(——2%) = ni

kT
» Dopants preferentially introduce electrons or holes into a semiconductor.

o At around room temperature, under most practical circumstances, the majority carrier

concentrations are set by the doping level and are independent of temperature. For an
n-type semiconductor:

ne, ~ Np
For a p-type semiconductor:
Po = Ny

o At low temperatures, carrier freeze-out occurs. At high temperatures, intrinsic production
of electron-hole pairs eventually overwhelms the doping level.
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2.6 Further reading

There are several excellent books that discuss in considerable detail the statistics of electrons and
holes in equilibrium.

Semiconductor Statistics by J. S. Blakemore, Dover, 1978. (ISBN 0-486-65362-5,
QC611.B52). Ch. 2 and 3 of this book contain a rather comprehensive discussion of the statistics
of electrons and holes in semiconductors in equilibrium in a variety of circumstances: intrinsic
semiconductor, degenerate intrinsic semiconductors, as well as semiconductors with single and
multiple impurity states. This text also has an appendix that describes several properties of
the Fermi-Dirac integrals, presents analytical approximations, and includes tables of values for
selected integrals.

Solid State and Semiconductor Physics by J. P. McKelvey, Krieger, 1986. (ISBN 0-
89874-396-6, QC611.M495). Ch. 9 of this classic book contains a few sections with a treatment
of the statistics of electrons and holes that is similar to the one presented here. This book is
characterized by a good compromise between mathematical complexity and physical intuition.
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Figure 2.20: Bandgap energy vs. temperature for Si and GaAs.

AT2.1 Temperature dependence of the bandgap

The bandgap of a semiconductor decreases with temperature. This is a consequence of the
expansion of the lattice constant as the temperature increases. This is shown for Si and GaAs in
Fig. 2.20. The dependence is accurately captured by an equation of the form:

(2.43)

where Ey(0) is the bandgap at 0 K and a and 3 are constants. The value of these constants for
Si and GaAs is given in Appendix E.

The dependence of E, with temperature is not very strong. It is important to consider it
when computing expressions that contain the bandgap inside an exponential, as the next exercise
shows.
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Exercise 2.8: Compute n; for Si at 600 °C'.

The easiest way to compute n; at any temperature is to use its value at 300 K since this is usually
relatively well known. First, let’s make explicit all temperature dependences of n;. From Eq. 2.39,
2.26, and 2.34, we can rewrite n; as:

: ( )
- 3/2 B At
n; = CT%* exp| kT ]
where C' is a constant independent of temperature.

The ratio of n; at two different temperatures is then:

wi(B) [TNY? 1 E(Th) E,(Tz)
n-g{Tz)_(T__'_z) EXP{_Q_}C[ ng B ‘}2 ]}

We can now plug in numbers for 7) = 873 K (600 °C') and T, = 300 K:

ni(873 K) = 1.07 x 101 x ( =2.6x 107 em ™3

873 300 J

873\ - 1 (0‘950 11
300 Plm %862 % 105

This is an interesting result. It shows that a Si region doped at the 10'7 em ™3 level is becoming
intrinsic at around 600 °C. It is easy to see that not accounting for the temperature dependence
of E4 would have resulted in an error of about a factor of three.

Above 250 K, the bandgap of Si can be described to within experimental accuracy (about
1 meV) by the simpler expression:

Ey(T) = Ego— CT (2.44)

where Eg, is the eztrapolation of E4 to 0 K and C is a constant (see Fig. 2.20 ). For Si,
Ego = 1.206 €V and C = 2.73 x 1074 eV - K~1. This is widely used around room temperature.

It is important not to confuse Ey, with E4(0), the true bandgap at 0 K. Interestingly, Eqgo
emerges frequently when carrying out experimental temperature-dependent studies of transport
processes around room temperature. The reason for this is that the factor exp(—FE,/kT) that is
pervasive in these types of processes has an activation energy around room temperature that is
precisely Eg,. This can be easily seen by using Eq. 2.44:

E c Eq
exp(—ﬁ) ~ exp(g) »exp(—ﬁ) (2.45)

A good example of this is the data for n; in Si of Fig. 2.5 which, in fact, shows an activation
energy very close to Ey/2. E,, frequently appears in the context of bandgap reference circuits.

AT2.2 Selected properties of the Fermi-Dirac integral

The Fermi-Dirac integral of order 1/2 belongs to a family of integrals called the Fermi-Dirac
integrals that are defined as:
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O S
Filz) = F(j-{-l)/g 1+e’f—“-’d7} (2.46)

The following relationship ties up all these integrals:

2 peth) = Fp i) (2.47)

dz™’
Other general properties of this class of integrals are described in several books (see, for

example Blakemore’s text cited above). Here we are almost exclusively interested in the Fermi-
Dirac integral of order 1/2 for which:

£ (2.48)

F12(x) has been tabulated for —4 < z < 10 by Blakemore. Useful approximations are:

Fiplz) ~ € for r < —1 (2.49)

B2 forz > 1 (2.50)

4.."3
37

These are particular expressions of the more general relationships:

By
—
=
—
[
m

2]

forz <« -1 (2.51)

il'.'j+1

Many numerical approximations have been developed for the Fermi-Dirac integrals. For the
interested reader, a review of several of them was presented by J. S. Blakemore in Solid-State
Electronics 25, p. 1067 (1982). The following expression, for example, has an error smaller than
0.4 % over a range —10 < x < +25, which is sufficient for most applications:

1
F];z(.’l.') ] m (2‘53)
3w
43/3(z)
' +50 4 33.6 2 {1 — 0.68 exp[—-0.17(z + 1)?]} (2.55)

=
—

=
—

Il
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When the carrier concentration is known and the position of the Fermi energy is to be calcu-
lated, the inverse function is needed. An approximation that has an error smaller than 1 % all
the way up to = = 20 is:

u = Fyplx) (2.56)
o~ Inu-+ul64+0.05524 u(64 + /)] "/ (2.57)

AT2.3 Approximations for strongly degenerate semiconductor

In a degenerate semiconductor, the Fermi level is located inside one of the bands. In these
circumstances, the Maxwell-Boltzmann approximation to the Fermi-Dirac integral leads to a very
large error (see Fig. 2.12). A better analytical approximation is given in Advanced Topic AT2.2
in Eq. 2.50 that is valid for a sufficiently degenerate semiconductor. Using this approximation,
for an n-type semiconductor we can write:

4 Ep — EC)3f 2
o~ N, 2
S CW = ( kT (2.58)
This equation is acceptable if n. > 1, Er — E, > kT or n, > N,.
Similarly. for a sufficiently degenerate p-type semiconductor, we can write:

4 E, - Ex\*/?

By, 0 N, - 2.59

Po =3 m " ( kT ) asie)

validif n, > 1, E, — Er > kT, or po > N,.

In many circumstances, the intermediate doping regime is of interest. For this, more accurate
approximations are needed, such as those given in Advanced Topic AT2.2.

Notice that in Eqgs. 2.58 and 2.59, the temperature dependence of N, and N, cancels out the
T-3/2 inside the brackets. The relationship between the majority carrier concentrations and the
Fermj level is temperature independent. In fact, these equations can be easily obtained using the
Fermi-Dirac distribution function in Eq. 2.21 at 0 K (see Problem 2.15 at end of Chapter).

AT2.4 Statistics of donor and acceptor ionization

A donor atom in a semiconductor can either be ionized or neutral. The donor is ionized when it
has released its electron to the conduction band. It is neutral if it still holds on to it. Defining Np
as the total donor concentration, NB as the ionized donor concentration, and N7, as the neutral
donor concentration, mass conservation demands that:
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semiconductor | dopant | E; (meV) 3, | E, (meV) j, NMMott (em™=7)

Si As 54 2 - - 6.4 x 1018

P 45 2 . . 3.5 x 108

Sb 39 2 = 5 3.0 x 1018

B ~ - 45 4 ~ 4 x 1018

CaAs C 5.9 2 26 4 ~ 1 x 1017

Si 5.8 2 35 4 ~ 2 x 1017

Be - 28 4 ~ 2 x 1018

Zn . B 31 4 ~3x 1018

Table 2.1: Ionization energy, impurity degeneracy factor, and Mott transition of common dopants in Si and
GaAs. The Mott concentration is not very well known in all cases.

Np = Nj, 4+ Np, (2.60)

The relative number of neutral and ionized donors is in general a function of the donor
lonization energy, the location of the Fermi level and temperature. If we define f4(Ep) as the

probability that the donor energy level is occupied by an electron, the neutral donor concentration
can be written as:

Np = Npfa(Ep) (2.61)

One might think that the occupation probability of the donor atom is equal to the Fermi-
Dirac distribution function. However, such an approximation does not account for the fact that
the fifth electron can become bound to the donor atom in more than one way. This is called

impurity level degeneracy. When this happens, statistical mechanics tells us that the probability
of occupation of the donor state becomes:

1
Ep) = E 2.62
fa(Ep) 14 _ﬁld exp Shote k}E ( )

where (4 is the donor degeneracy factor which is greater than or equal to unity. * G4 depends on
the host semiconductor and the type of dopant (p or n), but within a given type, it is independent
ol the specific dopant itself. Table 2.1 summarizes donor ionization energies for typical donors in

Si and GaAs.

Using Eq. 2.62 in Eq. 2.61, the neutral donor concentration is:

Np
Np = I s (2.63)
1+ 5; €XP —D—-—F—kT

*The technical literature is ambiguous in the definition of impurity level degeneracy. Sometimes, 34 is defined
50 as to be smaller than or equal to one. In this case, §4 appears in place of the 1/8a factor in Eq. 2.62. Thisis a
point where one must be careful.
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The ionized donor concentration is, from 2.60:
JI\ID

1 + Baexp EF—[TEQ

Similar arguments apply for acceptors. When an acceptor captures an electron, it becomes
negatively charged. Defining the neutral acceptor concentration as N and the ionized acceptor
concentration as N, mass conservation again implies:

Nj = Np - N§, (2.64)

Na=Nj+N; (2.65)

In this case:

Ny = Nafo(Ea) (2.66)
where fo(E4) is the occupation probability of the acceptor state. Acceptor states are also typically
degenerate. As a result, f,(F4) is given by:

1
(Ea) = T
faFa) 1 + B, exp ZazEE kTE

(2.67)
where 3, is the acceptor degeneracy factor (3, > 1). Values of 3, for several impurities in Si and
GaAs are tabulated in Table 2.1.

In a similar way to the case of donors, using Eq. 2.67, the ionized and neutral acceptor
concentrations are respectively given by:

Ny = : 2.68
4 1+ 3, exp Eﬂﬁ—‘gi ( )
N4
NG = - (2.69)
S Een B

In order to compute the actual ionization ratio of dopants, one must know the location of the
Fermi energy. This has to be calculated in a self-consistent way. Advanced Topic AT2.5 shows
how to do this in a specific case.

AT2.5 Carrier freeze-out

The energy required to ionize a dopant is small but finite. At low enough temperatures, the small
thermal energy available precludes many dopants from becoming ionized. As a consequence, the
carrier concentration drops with temperature. This is called carrier freeze-out.
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The results obtained in Advanced Topic AT2.4 allow us to compute the carrier concentration
as a function of temperature in the bulk of a semiconductor under charge neutrality conditions.
Let us do it for an n-type semiconductor doped with a concentration Np of donors (a similar
approach can be used with a p-type semiconductor). The electron concentration in the bulk is
equal to the ionized donor concentration:

g N (2.70)

In writing this equation, we have neglected the presence of a significant amount of electrons
that arise from the natural break up of crystal bonds. This is because the energy required for
this is £y, many times larger than the typical donor ionization energy. As the temperature drops,
bond break up freezes out much more quickly than donor ionization.

If we can assume Maxwell-Boltzmann statistics for the electrons in the conduction band, Eq.

2.64 can be rewritten as:

Np
Np=—— 2 2.7
P e =

Plugging into Eq. 2.70, one obtains a quadratic equation in n, that can easily be solved:

: Ed ND Ed
et e bl LSl 2.72
n, %, exp( Z )(\/1 +4ﬁd: : exp o i3 (2.72)

In the limit of high temperature, kT > Eq4, the second term inside the square root is small
and a simple Taylor series expansion leads to the result n, ~ Np already derived above.

For low enough temperatures, k7" < Ey, and the second term inside the square root over-
whelms the other two inside the brackets. We then obtain:

NpN, Eq

T 04 5 exp(—QkT)

(2.73)

This result shows that the electron concentration at low temperatures is thermally activated
with an activation energy of half of the donor ionization energy. This was plotted in Fig. 2.9
above.

In many situations, it is sufficient to compute the temperature at which freeze-out effects
become significant. A good working criteria is when the two terms inside the square root in Eq.
2.72 are equal, that is:

Eq

kin 5.8

(2.74)
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Exercise 2.9: Esltimate the temperature al which freeze-out effects become significant for
Phosphorus-doped Si with Np = 5 x 1017 em=3. Verify all your assumptions.

There is a small difficulty here because in order to use Eq. 2.74, we need to calculate N, at T,
before T}, is known. This situation can be resolved by writing a small computer program or using
a calculator in an iterative way. In either case, N, at T, is easily calculated starting from its room
temperature value:

Tisos P :
N.(Ty,) = N.(300 K)(g(%ﬁﬁ = 2.86 x 10'° (W{E}m em™3

We now use Eq. 2.74:

0.045

o — 7 N (.l' 0)
5 [
8.62x 10=2In —u——'r—-—-4x2x5X1017

Ty K

Solving this system of two equations, we find Ty, = 280 K, and N.(Tj,) = 2.6 x 10*° em 3.
Since at 280 K, Np << N, and n, < Np, the assumption of Maxwell-Boltzmann statistics that is
built into Eq. 2.74 is valid in this example. In order to verify the negligible impact of the hole
concentration in Eq. 2.70, we must calculate n, and p, and show that p, < n,. This is done in
the next exercise.

Exercise 2.10: Calculate the equilibrium electron and hole concentrations at 77 K in a sample of
P-doped Si with Np = 5 % 1017 em™3. Verify all your assumptions.

In the previous exercise we estimated that freeze-out effects are significant for temperatures lower
than about 280 K. We can then use Eq. 2.73 to compute n, at 77 K. Before that, we must first
compute N.(77 K) which is found to be 3.7 x 10'® em ™2, and kT(77 K) which is 6.6 meV. Then,

17 18 o
= \/5 x 1017 x 3.7 x 10 0.045 ) g2 10 D,

o= 2 P\ 5 0.0066

In order to compute p,, we must first calculate n; at 77 K. Using the approach described in
Advanced Topic AT2.1, we easily find n;(77 K) = 2.8 x 102" emn~*. We then get:

n?  7.9x1071
Po= — =

= 2.5 —56 . —3
L . W =25x10 * T

a truly negligible number.

The use of non-degenerate statistics for the electrons is validated since we find that n, < N, at
77 K. Furthermore, not accounting for the electron contribution from the break up of bonds is
validated since we found that p, < n,.

s AT2.6 Heavy-doping effects

Heavily-doped regions are pervasive in microelectronic devices. For example, the source and
drain of a MOSFET have doping levels of the order of 10 em~3. Analogously, the emitter of a
bipolar transistor has impurity levels of similar magnitude. At high doping levels, defined here
as 10’8 em =3 and above, several special effects occur that deserve particular attention. Some of
these phenomena are of relevance for important device figures of merit. For example, if heavy-
doping effects are not taken into account, a calculation of the current gain of a bipolar transistor
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increasing Np

Ev EF EDp Ec E

Figure 2.21: A sketch of heavy doping effects in an n-type semiconductor. As Np increases, the impurity level
broadens into an impurity band and merges into the conduction band, the conduction and valence bands develop
band tails, and the bandgap narrows.

can easily yield an error exceeding a factor of 10.

Fig. 2.21 illustrates the special effects that occur at high doping levels in an n-type semicon-
ductor:

1. The Fermi level penetrates into the majority-carrier band and the magjority carriers become
degenerate. This demands the use of Fermi-Dirac statistics for the majority carriers as
discussed in the main body of this chapter and in Advanced Topic AT2.3.

2. Bandgap narrowing takes place, that is, the energy difference between the conduction and
valence bands is reduced.

3. The impurity ionization energy drops as the doping level increases and eventually becomes
zero. This is called the Mott transition.

4. The impurity level broadens into an impurity band. This is only relevant at low temperatures
and will not be discussed here.

5. The density of states of the conduction and valence bands is deformed from its ideal square-
root shape. Band tailing appears at the edges of the bands. The extent of these tails is
only a few meV and as a result, this effect is not very significant for room temperature
operation. We will not consider it any further here.
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With the exception of majority carrier degeneracy, whose origin we already know, these effects
arise from a variety of sources. A detailed discussion is beyond the scope of this book but a few
words about them are appropriate here. First of all, at high doping levels, the dopant atoms
can no longer be considered far apart from each other, in fact, their Coulombic potentials start
to overlap. This reduces the impurity ionization energy. The presence of a high concentration
of majority carriers shrinks the energy required to break a bond through many-body effects. a
quantum-mechanical phenomenon. This results in bandgap narrowing. Many-body effects also
contribute to a further reduction of the impurity ionization energy. Finally, at high doping levels,
doping level fluctuations become very important. The fact is that dopants are not uniformly
dispersed inside the bulk of the semiconductor. Some regions have a higher concentration of
dopants than others. At low doping levels, these fluctuations in the doping concentration are
not very significant, but at high doping levels, coupled with the other heavy doping effects, they
contribute to impurity level broadening and band tailing.

We discuss in more detail the two most important heavy-doping effects, besides majority
carrier degeneracy, which are relevant for microelectronic devices, i.e. the Mott transition and
bandgap narrowing.

AT2.6.1 The Mott transition

As the doping level increases, it has been observed that the impurity ionization energy decreases.
A simple expression that captures this phenomenom is:

N; .
Ei = Bull - ()" for N; < Nasi (5:75)
E, = 0 for N; = N (2‘?6)

where "1” stands for the donor or acceptor subindex, E;, is the low-doping value of the ionization
energy given in Table 2.1, and Njy; is the Mott concentration, also listed in Table 2.1(the Mott
concentration is not very well known in all cases).

Eq. 2.76 shows that at a critical concentration, called the Mott transition, the ionization
energy goes to zero. The implications of this should be immediately apparent. For doping
levels higher than the Mott transition, all dopants are completely ionized at all temperatures.
Carrier freeze-out does not occur at low temperatures for semiconductors doped beyond the
Mott transition. As a result, the semiconductor remains conductive down to 0 K, just like
a metal. For this reason, this critical concentration also receives the name of Metal-Insulator
Transition. This is illustrated in Fig. 2.22 which displays the ratio of the measured electron
concentration at 4.2 K over 300 K in Phosphorus-doped Si for several doping levels. Samples
with doping levels below about 3.5 x 10'® ¢m ™3 freeze out at low temperatures and n,(4.2 K) <
n,(300 K). On the other hand, in samples with a doping level above 3.5 x 10'® ¢m =3 the electron
concentration is independent of temperature, that is, n,(4.2 K') ~ n,(300 K) (the small systematic
discrepancy between n,(4.2 K) and n,(300 K) for high doping levels is a feature introduced in
the interpretation of the data).
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Figure 2.22: Ratio of the measured electron concentration at 4.2 K over 300 K in Phosphorus-doped Si for
several doping levels. These data clearly reveal the Mott transition for Si:P at about 3.5 x 10'® cm™ (the small
systematic discrepancy between n.(4.2 K) and n.(300 K) for high doping levels is a feature introduced in the
interpretation of the data) [data from C. Yamanouchi et al., J. Phys. Soc. Jpn. 22, 859 (1967)).

The implications of this phenomenon to microelectronic devices are profound. In devices
designed to operate at low temperatures, regions doped below the Mott transition will significantly
freeze-out (and their resistivity will substantially increase), while those regions that are doped
above the Mott transition will not. The Mott transition has a noticeable influence even at room
temperature. If it were not for the Mott transition, at high doping levels the Fermi level would
cross the impurity level and significant dopant freeze-out would take place at room temperature.
You can appreciate this in the next example.

Exercise 2.11: Calculate the equiibrium electron concentration at 300 K of a sample of P-doped
Si with Np = 2 x 10'® em 2. Do it with and without consideration of the Mott transition. Verify
all your assumptions.

To be expeditious, we will use directly the exact expression 2.72. This equation is valid in both
cases because the only assumption built into it is the Maxwell-Boltzmann approximation for the
electron statistics. This is insured in this problem, since Np < N..

Without consideration of the Mott transition, E4 for Phosphorus-doped Si is 0.045 V. Plugging
in Eq. 2.72, this yields:

1o(Ego = 0.045 meV) = 1.31 x 10'% em ™2

The dopant ionization ratio is only 66%.

The Mott transition considerably reduces E4. Using Eq. 2.75, we find that for Np = 2x 10*% em ™3,
E4 =0.005 eV. Plugging again into Eq. 2.72, we obtain:

no(Fq = 0.005 meV) = 1.75 x 10 ¢ 3

The dopant ionization ratio is now 87%.
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Figure 2.23: Bandgap narrowing vs. doping level in Si.

The dopant concentration at which the Mott transition takes place depends both on the host
semiconductor and the dopant species. Values for the Mott transition for typical dopants in Si
and GaAs are listed in Table 2.1. Some of these are not very accurately known.

AT2.6.2 Bandgap narrowing

At high doping levels, many body effects that arise from the high majority carrier concentration
result in a rigid shrinkage of the bandgap. Experimentally it is found that bandgap narrowing
increases with doping level but is otherwise a property of the host semiconductor, that is, it
appears to be independent of the dopant species and temperature.

Bandgap narrowing, AE,. is usually defined as a positive quantity, that is:

Ey np=E4; 1p— AE, (2.77)

where E;_pp is the low-doping value of the bandgap, and E,_gp is the actual bandgap at a
certain doping level. Fig. 2.23 shows bandgap narrowing as a function of doping level in Si. An
analytical description of this function is given in Appendix E.

Bandgap narrowing does not affect the majority carrier concentration which is set by the
doping level only. On the other hand, the minority carrier concentration is increased since the
energy required to break a bond and produce an electron-hole pair is reduced. In the heavily-
doped regime, this is usually accounted for by defining an effective intrinsic carrier concentration,
Nje, Which in general is different from the low-doping value derived earlier in this chapter. Looking
back at Eq. 2.39, a reduction of the bandgap results in an increase in n;. The exponential
dependence of n; on Ej, makes small changes in the bandgap very significant.
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Figure 2.24: Effective intrinsic carrier concentration vs. doping level in the heavy doping regime for n-Si at 300 K.
Also shown are the low-doped value nZ,, and n?, separately due to bandgap narrowing and electron degeneracy.

Unfortunately, we cannot just modify Eq. 2.39 since it was deduced under the assumption that
Maxwell-Boltzmann statistics are valid for both types of carriers. In the heavy-doping regime,
this is clearly not the case for the majority carriers. A new expression for the n,p, product that
is valid in the heavy-doping regime is required. The starting point is Eq. 2.37. Multiplying and
dividing by exp E%L.D, we get:

Eq_1p ;
ToPo = N2 = 12, Fia(ne) Fiya(nw) exp T‘rf (2.78)

where, following conventional practice, we have relabeled the intrinsic carrier concentration in
the low-doping regime as n;, and we have defined the NoPo product in the highly-doped regime
as -rzfe.

Eq. 2.78 can be further simplified if we focus on a specific doping polarity. For an n-type
semiconductor, for example, the holes follow Maxwell-Boltzmann statistics. This allows us to use
the exponential approximation to the Fermi-Dirac integral for the term in Fijo(mw). After some
straighforward algebra, Eq. 2.78 can be rewritten as:

, Fijo(me)  AE
2 9 S1/2\Me g
g =T e XD = (2.79)
where we have also used Eq. 2.77. A similar expression can be obtained for a p-type semicon-
ductor.

Fig. 2.24 graphs Eq. 2.79 for n-Si at room temperature as a function of doping level. For
low doping levels, nfe converges to n?,. Beyond a doping level of around Np ~ 108 em =3, nfe
starts to increase over the low-doped value. At about 1020 ¢m =3, nfe peaks and starts decreasing.
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This peculiar behavior of nfe can be understood by examining separately the impact of bandgap
narrowing and electron degeneracy on nfe. These are also graphed separately in Fig. 2.24. The
increase in bandgap narrowing with doping level makes n?e increase very quickly through the
exp(AE,/kT) term in Eq. 2.79. But as the doping level increases, the Fermi level penetrates
into the conduction band and the electrons become degenerate. This brings n2, down through
the term in Fj j9(nc)/€" which is at most unity and decreases as 7, increases. A physical way to
explain this is that as the doping level increases, the bottom of the conduction band fills up with
electrons and the energy required to break a bond and produce an electron-hole pair increases.
Everything else being equal, this reduces the n,p, product.
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Exercise 2.12: Calculate the equlibrium electron and hole concentrations at 300 K of a sample of
P-doped Si with Np = 1x10% em=3. Do it with and without consideration of bandgap narrowing.
Verify all your assumptions.

Since Np = 10%" em™3 is beyond the Mott transition for P-doped Si,

ne = Np = 10%" em ™3
In order to compute p,, we must first obtain n%. We could simply use Fig. 2.24. But the resolution
of this graph is limited, and besides, it is of value to trace the steps of the computation of n? .
First, we have to find the position of the Fermi level. This can be easily accomplished through the
use of the approximation to the inverse Fermi-Dirac function given in Egs. 2.56-2.57. This yields:

.= 2.43

This means that the Fermi level has penetrated over 2kT”s into the conduction band.

Armed with 7. we can now compute the term F; 72(ne) /e’ in Eq. 2.79. Note that there is no need
to carry out the Fermi-Dirac integral since Fy5(n.) = Np/N, = 3.50. We then get:

}-1/2(7?:;) —0.31
elle '

The degeneracy of the electron gas reduces p,n, to 31% of its low-doped value.

To acount for bandgap narrowing, we first, obtain the value of AFE, that corresponds to Np =
10%° em™~% in Fig. 2.23. We find AE, = 109 meV. This allows us to compute the term that enters
the equation of n? :

exp Akgg = 67.6

Bandgap narrowing alone increases the p,n, product by over 67 times!

We now plug in all terms into Eq. 2.79, and get:
nZ, =24 % 10*! em™3

This allows us to obtain the equilibrium hole concentration as:

”’?e -3
Po=— =24 em
Mg

Without any consideration of heavy doping effects, we would have obtained a value of p, of 1.1,
off by more than an order of magnitude.
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Problems

[* denotes a problem that requires studying an Advanced Topic]

2.1

2.2

2.3

2.4

Consider a stack of three wafers at room temperature. The top one is GaAs (E,1 = 1.42 eV),
the middle one is Si (E4o = 1.12 V) and the bottom one is Ge (E,3 = 0.66 €V'), as sketched
below. To this stack we shine three lasers with wavelentghs Ay = 0.85 pm, A2 = 1.3 pm,
and Az = 1.55 pm, once from above and a second time from below. For each illuminating
condition, in which wafer is each laser beam absorbed? Explain.

Ay hp A3

£

4

A Az Ag

This exercise explores the physical meaning of the effective density of states of a band.

a) Assume a fictitious semiconductor with a conduction band density of states in which there
are N, states all located at E.. Analytically, g.(E) = N.6(E — E.), where ¢ is the Dirac
delta function. Calculate an expression for the electron concentration as a function of
the relative position of Er with respect to E,.. Simplify for a non-degenerate situation
in which Ef is far below E..

b) Let us discuss now the origin of the temperature dependence T%/? deduced in class for
N, and N,. Consider another fictitious semiconductor with a step-like conduction-band
density of states g.(E) = A.u(FE — E.), where A, is a constant and u is the step function.
Using Maxwell-Boltzmann statistics, calculate the electron concentration as a function of
the position of Ep with respect to E.. Why does the exponential prefactor (the effective
density of states in this case) depend on T7

¢) Based on what you found above, what is the physical meaning of N.? Can you speculate
on why it is called effective density of states? Is N, the total integrated density of states
of the conduction band? Why does it depend on T7 Does it make sense to talk about
effective density of states in a degenerate case?

For high temperatures, Maxwell-Boltzmann statistics might not be suitable for an intrinsic
semiconductor. How can this happen? In Si, which type of carrier, holes or electrons, suffers
from this first as the temperature increases? Fstimate the temperature dependence at which
Maxwell-Boltzmann statistics will stop holding for intrinsic Si.

Misiakos and Tsamakis carried out measurements of the intrinsic carrier concentration in Si
vs. temperature (see Fig. 2.5). The data they obtained is given on the table below:



J. A,

2.5

2.6

2.7

2.8

del Alamo

T (K) | n; (em™)
77.8 | 5.00 x 10720
100 | 2.00 x 10~}

120.75 | 3.40 x 1079

137.5 | 4.60 % 10~3
148.4 | 2.10 x 10~
169.7 | 8.40 x 10!
195 | 1.78 x 10*
199.5 | 4.30 x 10*
213 | 4.16 x 10°
239 | 1.92 x 107
256.5 | 1.45 x 108
270.6 | 6.70 x 108
281 | 1.79 x 10°
300 | 9.70 x 10°
319.5 | 4.51 x 100
340.5 | 1.89 x 10!

Graph an Arrhenius plot and extract the activation energy.

Optional: do a least square fit of the data with the following equations:

a) ni(T) = Ky exp — %

2kT
b) ni(T) = Ka(555)%/ exp — £x.
c) ni(T) = Ks(555)%° exp — &%
i i 2
d) n;(T) = Ks(305)%° exp — 20} with E,(T) = 1.17 - T

Consider a p-type Si wafer with an acceptor concentration of Ny = 1017 ¢m—3. Compute at
room temperature under equilibrinm conditions:

a) Hole concentration.

b) Electron concentration.

¢) Position of the Fermi level with respect to the conduction band and the valence band
edges.
d) Probability that a state at the bottom of the conduction band is occupied.

e) Probability that a state at the top of the valence band is empty.

At which temperature will a Si-sample with 10'7 donors become an intrinsic semiconductor?
Is the Maxwell-Boltzmann-approximation still valid at this temperature? If so, estimate at
which temperature this approximation breaks down.

The Fermi wavelength is the de Broglie-wavelength of electrons located at the Fermi-energy.
Estimate the Fermi wavelength of n-type Si with 3 x 102° ¢m =3 electrons. Assume the effective
mass of an electron in Si to be the same as the density of states effective mass.

InP is a semiconductor with a bandgap at room temperature of 1.35 €V, an electron density
of states effective mass of 0.077 m,, and a hole density of states effective mass of 0.64 m,,.

Calculate at room temperature:

a) N, Ny, n; and E;. Verify all your assumptions.
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b) In a chunk of InP that sits in thermal equilibrium at 300 K, the Fermi level is 0.2 eV’
below the conduction band edge. Calculate n, and p, (without invoking n,p, = n?).
Calculate the np product and compare with n? calculated above. Comment.

c) In a different chunk of InP also in thermal equilibrium at 300 K, the Fermi level is now
0.1 eV below the valence band edge. Calculate n, and p, (without invoking nep, = n?).
Calculate the np product and compare with n? calculated above. Comment.

Consider a compensated semiconductor uniformly doped with a a donor concentration Np
and an acceptor concentration N4, with Np > Na. Assume that conditions are such that
Maxwell-Boltzmann statisties and full impurity ionization apply.

a) Derive a general expression for the electron and hole concentrations in equilibrium,

b) Discuss the coudition that needs to be satisfied for this semiconductor to be simply con-
sidered n-type with a net doping level Ny ~ Np — Nj.

c) If Np = 10'® ¢m~3 in Si at room temperature, what is the maximum compensation
ratio Na/Np that allows the semiconductor to be simply considered n-type with Ny =
Np — N47 Make explicit your error acceptance criteria.

It is possible to estimate the donor ionization energy in a semiconductor following a similar
methodology to that followed in Problem 1.7. In very elemental terms, a donor can be con-
sidered as a Hydrogen atom that is immersed in a semiconductor. The fifth valence electron
of the donor atom (the one that does not participate in bonding with neighboring Si atoms)
behaves in a way as the electron of the Hydrogen atom. It effectively sees a positive charge
of value +¢ at the nucleus, since all the other protons are compensated by the rest of the
electrons of the donor atom. The fundamental difference between a donor and a H atom is
that the first is immersed in a solid. We can account for this by using the permittivity of the
solid instead of that of vacuum and describe the electron by an effective mass that includes
its quantum mechanical interactions with the lattice atoms.

Following the procedure of Problem 1.7, derive an expression for the radius and the binding
energy of the fifth valence electron of a donor atom in Si. Use an effective mass for the electron
equal to: m! = 0.28m,. Use also the permittivity of Si that is given in Appendix B. Give
the result in terms of nm and ¢V. Comment. Calculate how many Si atoms are included in

‘a sphere with a radius equal to the estimated radius of the fifth electron. Comment.

Compute and graph the normalized electron concentration per unit energy n,(E)/n, in Si at
room temperature for Ep — E. = —6kT, —4kT, —2kT, 0, 2kT, 4kT,and 6kT. Discuss the
evolution of the electron distribution as Er penetrates into the conduction band.

Specify the range of donor concentrations in which each of the three equations below are
reasonably accurate for n-type GaAs at room temperature. Assume that all donors are fully
ionized and that there are no other dopants. Explain (see suitable parameters for GaAs in
Appendix B).

R
a) nepe = n;

b) Ep — E.=kTIn {2

2
T
c) po= No

Derive relationships for n, and p, in terms of n; and the relative position of Er and E; under
the constraint of Maxwell-Boltzmann statistics.
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Following a procedure similar to that of Sec. 2.4.2, derive an expression for the average

kinetic energy of all conduction band electrons of a non-degenerate semiconductor at room
temperature. Comment on the result.

2.15" Derive Equation 2.58 directly from Eqs. 2.20 and 2.21 using the Fermi-Dirac distribution

2.16

2.17

2.18

2.19

2.20

2.21

2.22

function at 0K.

Consider an n-type Si sample with Np = 10'® ¢m 2 at room temperature in thermal equi-
librium. Calculate the position in energy of the peak of the electron concentration inside the
conduction band. '

Consider an n-type semiconductor with a concentration N p of donors. Starting from Eqs. 2.8
and 2.9, derive general relationships for n, and Po in terms of Np and n; that are valid under
Maxwell-Boltzmann statistics. Discuss the condition that needs to be satisfied for Eqs. 2.12
and 2.13 to be applicable.

Derive an expression for the transition temperature between the extrinsic and intrinsic regimes
in a p-type semiconductor. Discuss the dependencies that are observed. Estimate the tem-
perature at which a p-Si wafer doped with N4 = 10'7 ¢m =3 becomes intrinsic.

In a certain Si sample at room temperature and in thermal equilibrium, the Fermi level is
0.1 eV below the valence band edge.

a) Calculate the electron concentration, n,,.

b) Calculate the hole concentration, p,.

Describe a semiconductor in which Maxwell-Boltzmann statistics cannot be used in thermal
equilibrium for neither electrons nor holes at room temperature. Explain.

Other than through bandgap narrowing, does the threshold photon energy for carrier gener-
ation in a semiconductor depend on doping? Explain.

Fig. 2.9 sketches the electron concentration of a piece of non-degenerate n-type semiconductor
in thermal equilibrium as a function of temperature in an Arrhenius plot. In the axes provided
below, sketch the evolution of the location of the Fermi level with respect to the band edges
as a function of temperature for the entire temperature range. For simplicity, assume that
Ne¢ = Ny, and both N¢ and Ny as well as E, are all temperature independent. Explain your
drawing in each of the temperature regimes.

E a
EC

1/KT
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